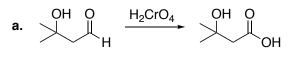
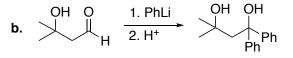
Chemistry 234-101 Exam 3 – Version A

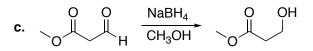
Summer 2019

Dr. J. Osbourn

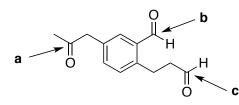
Instructions: Answer the first 18 questions of this exam using the bubble sheet attached to the end of this exam booklet. You may detach this sheet if you wish. Answer the remaining questions directly on this exam. Show all work and provide complete explanations.

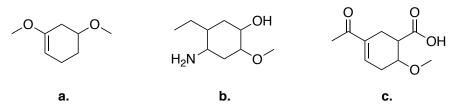

IA 1	The Periodic Table $\int_{2}^{\frac{\sqrt{111}}{2}}$																
H	2						/410	IVIL	<u> </u>			13	14	15	16	17	He
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
3	4											5	6	7	8	9	10
Li	Be											B	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
11	12										10.00	13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192,2	195.1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)							
		5 - C	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
		*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	

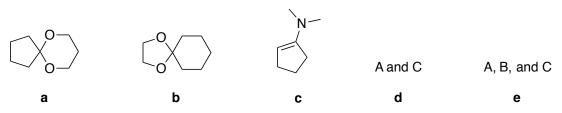

Yb Lu	* **				66	65	64	63	62	61	60	59	58	
	Yb	Tm	Er	Ho	Dy	Tb	Gd	Eu	Sm	Pm	Nd	Pr	Ce	*
173.0 175.0	173.0	168.9	167.3	164.9	162.5	158.9	157.3	152.0	150.4	(145)	144.2	140.9	140.1	
102 103	102	101	100	99	98	97	96	95	94	93	92	91	90	
No Lr	No	Md	Fm	Es	Cf	Bk	Cm	Am	Pu	Np	U	Pa	Th	^
(259) (260)	(259)	(258)	(257)	(252)	(251)	(247)	(247)	(243)	(244)	(237)	238.0	(231)	232.0	
		101 Md	100 Fm	99 Es	98 Cf	97 Bk	96 Cm	95 Am	94 Pu	93 Np	92 U	91 Pa	90 Th	^

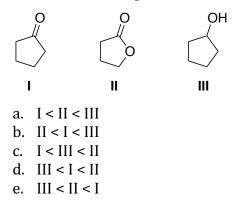

Multiple-Choice

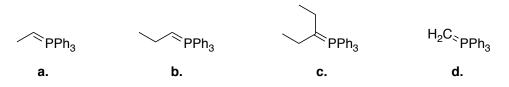
Choose the best answer for each of the following questions. Record each answer on the attached bubble sheet. **Ensure you completely bubble in your answers**. (2 points each)


1. Which one of the following requires the use of a protecting group to carry out the desired transformation?

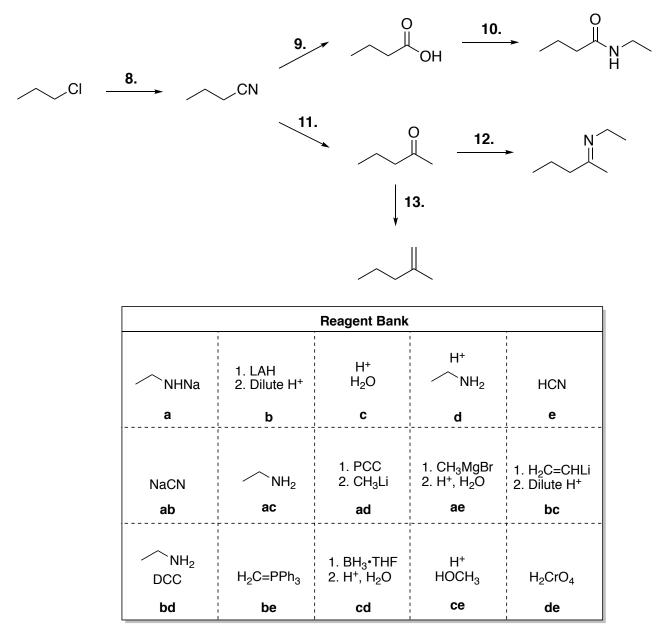



- d. All of these require a protecting group
- e. None of these require a protecting group
- 2. Which statement regarding the Fischer esterification is false?
 - a. The reaction can be catalyzed by adding acid.
 - b. The reaction can be driven to completion by removing water as it is formed.
 - c. The reaction can be driven to completion by adding a large excess of one reagent.
 - d. The reaction is an equilibrium process
 - e. None of the above statements are false.
- 3. Which one of the indicated carbonyls is the most reactive toward a nucleophile?

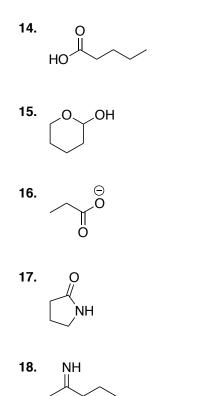

4. Which compound below will be the most water soluble?


5. Which one of the following has/have cyclopentanone as a hydrolysis (H⁺, H₂O) product?

6. Rank the following from lowest boiling point to highest boiling point.



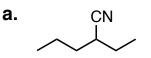
7. What ylide will produce 3-ethyl-3-hexene upon reaction with 3-pentanone?

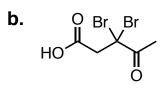

Reagent Matching

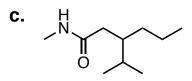
Use the reagent bank to select the best reagent for each transformation in the synthetic scheme shown below. You may only use each reagent once. *Bubble these answers in on your bubble sheet for credit.* (2 points each)

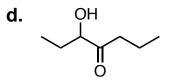
Structure Matching

Match each structure shown below with the appropriate term from the term bank. *Bubble these answers in on your bubble sheet for credit. (2 points each)*

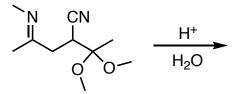


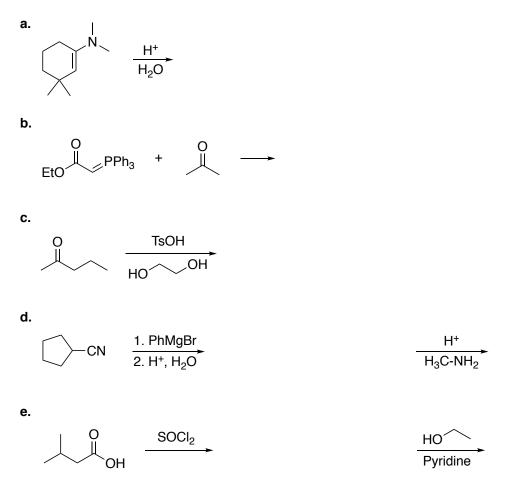

Term Bank a. δ-lactone b. carboxylate c. acetal d. γ-lactam e. hemiacetal ab. alkoxide ac. imine ad. butyric acid ae. ylide bc. carboxide bd. valeric acid be. γ-lactone cd. enamine cd. solactam								
 b. carboxylate acetal d. γ-lactam e. hemiacetal ab. alkoxide ac. imine ad. butyric acid ae. ylide bc. carboxide bd. valeric acid be. γ-lactone canamine 	Term Bank							
 c. acetal d. γ-lactam e. hemiacetal ab. alkoxide ac. imine ad. butyric acid ae. ylide bc. carboxide bd. valeric acid be. γ-lactone cd. enamine 	a.	δ -lactone						
 d. γ-lactam e. hemiacetal ab. alkoxide ac. imine ad. butyric acid ae. ylide bc. carboxide bd. valeric acid be. γ-lactone cd. enamine 	b.	carboxylate						
 e. hemiacetal ab. alkoxide ac. imine ad. butyric acid ae. ylide bc. carboxide bd. valeric acid be. γ-lactone cd. enamine 	c.	acetal						
 ab. alkoxide ac. imine ad. butyric acid ae. ylide bc. carboxide bd. valeric acid be. γ-lactone cd. enamine 	d.	γ-lactam						
 ac. imine ad. butyric acid ae. ylide bc. carboxide bd. valeric acid be. γ-lactone cd. enamine 	e.	hemiacetal						
 ad. butyric acid ae. ylide bc. carboxide bd. valeric acid be. γ-lactone cd. enamine 	ab.	alkoxide						
 ae. ylide bc. carboxide bd. valeric acid be. γ-lactone cd. enamine 	ac.	imine						
 bc. carboxide bd. valeric acid be. γ-lactone cd. enamine 	ad.	butyric acid						
 bd. valeric acid be. γ-lactone cd. enamine 	ae.	ylide						
be. γ-lactone cd. enamine	bc.	carboxide						
cd. enamine	bd.	valeric acid						
	be.	γ-lactone						
ce. δ-lactam	cd.	enamine						
	ce.	δ -lactam						
de. caproic acid	de.	caproic acid						


Completion Section

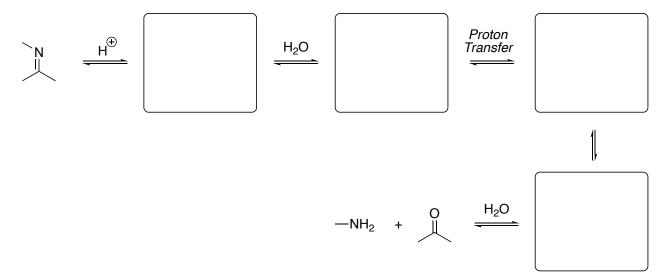

Answer the remaining questions directly on the exam itself. Please write neatly and **<u>darkly</u>** as your answers will be scanned for grading.

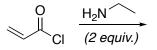
19. Provide IUPAC systematic names for each compound shown below. (3 points each)

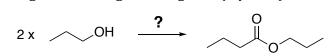


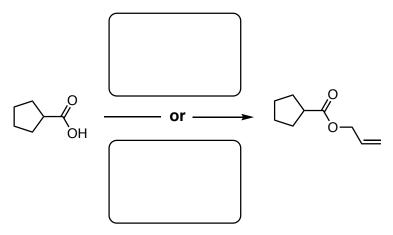


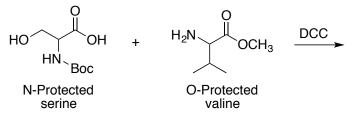
20. Draw all of the products that will result if the following compound is subjected to hydrolysis conditions. *(3 points)*

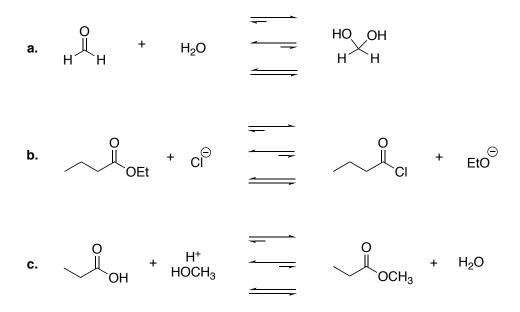

21. Predict the major product(s) for each of the following reactions. You do not need to include stereochemistry. (2 points each)


22. Show the steps necessary to prepare the following product from the given starting material and any other organic or inorganic reagents. *(6 points)*


23. The mechanism for imine hydrolysis is shown below. Provide the missing intermediates and draw in curved arrows to show electron flow. (8 points)


24. Draw the product and complete electron pushing mechanism for the following reaction. (6 points)


25. Design a synthesis of the following product using the provided starting materials and any other organic or inorganic reagents. (5 points)


26. Provide two different sets of conditions (reagents) that can be used to prepare the following ester from the carboxylic acid. (4 points)

27. Below are the structures of serine (N-protected with a Boc group) and valine (O-protected as a methyl ester). Show the dipeptide fragment that results from a DCC coupling reaction. *(3 points)*

28. For each reaction below, circle the equilibrium arrows that best represent the directionality of the reaction. (1 point each)

